Signatures of hermitian forms and applications

THOMAS UNGER

(joint work with Vincent Astier)

In [1], [2] and [3] we started developing the theory of signatures of hermitian forms, defined over central simple algebras with involution (with respect to orderings on the base field), inspired by [4]. In contrast to classical signatures of quadratic forms, signatures of hermitian forms should be considered as relative invariants. Below we present a summary of our work thus far.

Let F be a formally real field with space of orderings X_F and Witt ring W(F). Let (A, σ) be an F-algebra with involution, i.e. a pair consisting of a finite-dimensional F-algebra A, whose centre Z(A) satisfies $[Z(A):F] \leq 2$, and which is assumed to be either simple (if Z(A) is a field) or a direct product of two simple algebras (if $Z(A) = F \times F$), and an F-linear involution $\sigma: A \to A$. For $\varepsilon \in \{-1, 1\}$ let $W_{\varepsilon}(A, \sigma)$ be the Witt group of Witt equivalence classes of ε -hermitian forms defined on finitely generated right A-modules. This is a W(F)-module. All forms are assumed to be non-singular and are identified with their classes in $W_{\varepsilon}(A, \sigma)$.

Let A be Brauer equivalent to an F-division algebra D and let ϑ be an involution on D of the same kind as σ . Then (A, σ) and (D, ϑ) are Morita equivalent and we obtain a (non-canonical) isomorphism of W(F)-modules $W_{\varepsilon}(A, \sigma) \simeq W_{\varepsilon\mu}(D, \vartheta)$ with $\mu \in \{-1, 1\}$. For the purpose of the study of signatures we may assume that $\varepsilon = \mu = 1$, cf. [1, 2.1].

Let $P \in X_F$, let F_P denote a real closure of F at P and consider

$$(\star) W(A,\sigma) \longrightarrow W(A \otimes_F F_P, \sigma \otimes \mathrm{id}) \xrightarrow{\mathscr{M}_P} W_{\varepsilon}(D_P, \vartheta_P) \xrightarrow{\mathrm{sign}_P} \mathbb{Z},$$

where the first map is induced by scalar extension, the second map is an isomorphism of $W(F_P)$ -modules induced by Morita equivalence and sign_P is either the classical signature isomorphism if $\varepsilon=1$ and $(D_P,\vartheta_P)\in\{(F_P,\operatorname{id}),(F_P(\sqrt{-1}),-),((-1,-1)_{F_P},-)\}$ (where - denotes conjugation and quaternion conjugation, respectively), or $\varepsilon=-1$ and $\operatorname{sign}_P\equiv 0$ if $(D_P,\vartheta_P)\in\{(F_P,\operatorname{id}),((-1,-1)_{F_P},-),(F_P\times F_P,\widehat{})\}$ (where $\widehat{}$ denotes the exchange involution), and where in each case the indicated involutions are obtained after a further application of Morita equivalence. We call $\operatorname{Nil}[A,\sigma]:=\{P\in X_F\mid \operatorname{sign}_P\equiv 0\}$ the set of nil-orderings of (A,σ) . It depends only on the Brauer class of A and the type of σ . In addition it is clopen in X_F [1, 6.5]. We write $\widetilde{X}_F:=X_F\setminus \operatorname{Nil}[A,\sigma]$.

Definition 1. Let $h \in W(A, \sigma)$, $P \in X_F$ and \mathscr{M}_P as in (\star) . The *M-signature* of h at (P, \mathscr{M}_P) is defined by $\operatorname{sign}_P^{\mathscr{M}_P} h := \operatorname{sign}_P(\mathscr{M}_P(h \otimes F_P))$ and is independent of the choice of F_P .

If we choose a different Morita map \mathcal{M}_P' in (\star) , then $\operatorname{sign}_P^{\mathcal{M}_P'} h = \pm \operatorname{sign}_P^{\mathcal{M}_P} h$, cf. [1, 3.4], which prompts the question if there is a way to make the M-signature independent of the choice of Morita equivalence. It follows from [1, 6.4] and [2, 3.2] that:

Theorem 2. There exists $H \in W(A, \sigma)$ such that $\operatorname{sign}_{P}^{\mathcal{M}_{P}} H \neq 0$ for all $P \in \widetilde{X}_{F}$.

Definition 3. Let $P \in \widetilde{X}_F$, let \mathscr{M}_P be any Morita map as in (\star) , let H be as in (2) and let $\delta \in \{-1,1\}$ be the sign of $\operatorname{sign}_{P}^{\mathcal{M}_{P}} H$. Let $h \in W(A,\sigma)$. The Hsignature of h at P is defined by $\operatorname{sign}_{P}^{H} h := \delta \operatorname{sign}_{P}^{\mathcal{M}_{P}} h$. If $P \in \operatorname{Nil}[A, \sigma]$, we set $\operatorname{sign}_{P}^{H} h := 0.$

The H-signature at P is independent of the choice of Morita equivalence \mathcal{M}_P and is a refinement of the definition of signature in [4], the latter not being defined when σ becomes hyperbolic over $A \otimes_F F_P$, cf. [1, 3.11]. The H-signature has many pleasing properties, cf. [5, 4.1] for (iv) and [1, 3.6, 8.1] for the other statements:

Theorem 4.

- (i) Let h be a hyperbolic form over (A, σ) , then $\operatorname{sign}_P^H h = 0$. (ii) Let $h_1, h_2 \in W(A, \sigma)$, then $\operatorname{sign}_P^H (h_1 \perp h_2) = \operatorname{sign}_P^H h_1 + \operatorname{sign}_P^H h_2$.
- (iii) Let $h \in W(A, \sigma)$ and $q \in W(F)$, then $\operatorname{sign}_P^H(q \cdot h) = \operatorname{sign}_P q \cdot \operatorname{sign}_P^H h$.
- (iv) (Pfister's local-global principle) Let $h \in W(A, \sigma)$. Then h is a torsion form if and only if $\operatorname{sign}_{P}^{H} h = 0$ for all $P \in X_{F}$.
- (v) (Going-up) Let $h \in W(A, \sigma)$ and let L/F be an algebraic extension of ordered fields. Then $\operatorname{sign}_Q^{H \otimes L}(h \otimes L) = \operatorname{sign}_{Q \cap F}^H h$ for all $Q \in X_L$.
- (vi) (Going-down: Knebusch trace formula) Let L/F be a finite extension of ordered fields and let $h \in W(A \otimes_F L, \sigma \otimes id)$. Then $\operatorname{sign}_P^H(\operatorname{Tr}_{A \otimes_F L}^* h) =$ $\sum_{P\subseteq Q\in X_L}\operatorname{sign}_Q^{H\otimes L}h \text{ for all }P\in X_F, \text{ where }\operatorname{Tr}^*_{A\otimes_F L}h \text{ denotes the Scharlau transfer induced by the A-linear homomorphism}\operatorname{id}_A\otimes\operatorname{Tr}_{L/F}:A\otimes_F L\to A.$

The pair $(\ker \operatorname{sign}_P, \ker \operatorname{sign}_P^H)$ is a prime m-ideal of the W(F)-module $W(A, \sigma)$ whenever $P \in X_F$ in the following sense, cf. [2, 4.1]:

Definition 5. Let R be a commutative ring and let M be an R-module. An m-ideal of M is a pair (I, N) where I is an ideal of R, N is a submodule of M, and such that $I \cdot M \subseteq N$.

An m-ideal (I, N) of M is prime if I is a prime ideal of R (we assume that all prime ideals are proper), N is a proper submodule of M, and for every $r \in R$ and $m \in M$, $r \cdot m \in N$ implies that $r \in I$ or $m \in N$.

We obtain a classification à la Harrison and Lorenz-Leicht, cf. [2, 5.5, 5.7]:

Theorem 6. Let (I, N) be a prime m-ideal of the W(F)-module $W(A, \sigma)$.

- (a) If $2 \notin I$, then one of the following holds:
 - (i) There exists $P \in X_F$ such that $(I, N) = (\ker \operatorname{sign}_P, \ker \operatorname{sign}_P^H)$.
 - (ii) There exist $P \in X_F$ and a prime p > 2 such that $(I, N) = (\ker(\pi_p \circ I))$ sign_P), $\operatorname{ker}(\pi \circ \operatorname{sign}_P^H)$), where $\pi_p : \mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ and $\pi : \operatorname{Im} \operatorname{sign}_P^H \to$ $\operatorname{Im}\operatorname{sign}_{P}^{H}/(p\cdot\operatorname{Im}\operatorname{sign}_{P}^{H})$ are the canonical projections.
- (b) If $2 \in I$, then I = I(F), the fundamental ideal of W(F). Furthermore, a pair (I(F), N) is a prime m-ideal of $W(A, \sigma)$ if and only if N is a proper submodule of $W(A, \sigma)$ with $I(F) \cdot W(A, \sigma) \subseteq N$.

When $2 \in I$, N is not uniquely determined by I (in contrast to the $2 \notin I$ case), since there are in general several proper submodules N of $W(A, \sigma)$ containing $I(F) \cdot W(A, \sigma)$, such as $I(F) \cdot W(A, \sigma)$ itself and $I(A, \sigma)$, the submodule of $W(A, \sigma)$ consisting of all classes of forms of even rank. In general $I(F) \cdot W(A, \sigma) \neq I(A, \sigma)$, cf. [2, 5.8]. Also, $I(A, \sigma)$ can be singled out by a natural property, cf. [2, 5.10]. The following result is [1, 7.2]:

Theorem 7. Let $h \in W(A, \sigma)$. The total H-signature sign^H $h : X_F \to \mathbb{Z}, P \mapsto \operatorname{sign}_P^H h$ is continuous (with respect to the Harrison topology on X_F and the discrete topology on \mathbb{Z}).

Finally, we present some results from [3]. Let $C(X_F, \mathbb{Z})$ denote the ring of continuous functions from X_F to \mathbb{Z} and consider the group homomorphism $\operatorname{sign}^H : W(A, \sigma) \to C(X_F, \mathbb{Z}), h \mapsto \operatorname{sign}^H h$.

Theorem 8. For every $f \in C(X_F, \mathbb{Z})$ there exists $n \in \mathbb{N}$ such that $2^n f \in \operatorname{Im} \operatorname{sign}^H$. In other words, the cokernel of sign^H is a 2-primary torsion group.

Definition 9. The stability index of (A, σ) is the smallest $k \in \mathbb{N}$ such that $2^k C(X_F, \mathbb{Z}) \subseteq \operatorname{Im} \operatorname{sign}^H$ if such a k exists and ∞ otherwise. It is independent of the choice of H. The group coker sign^H is up to isomorphism independent of the choice of H. We denote it by $S_H(A, \sigma)$ and call it the stability group of (A, σ) .

It follows from Theorems 4(iv) and 8 and from [6, 6.1] that

Theorem 10. Let $W_t(A, \sigma)$ denote the torsion subgroup of $W(A, \sigma)$. The sequence

$$0 \longrightarrow W_t(A, \sigma) \longrightarrow W(A, \sigma) \xrightarrow{\operatorname{sign}^H} C(X_F, \mathbb{Z}) \longrightarrow S_H(A, \sigma) \longrightarrow 0$$

is exact. The groups $W_t(A, \sigma)$ and $S_H(A, \sigma)$ are 2-primary torsion groups.

References

- [1] V. Astier and T. Unger, Signatures of hermitian forms and the Knebusch Trace Formula (2012), http://arxiv.org/abs/1003.0956
- [2] V. Astier and T. Unger, Signatures of hermitian forms and "prime ideals" of Witt groups (2013), http://arxiv.org/abs/1303.3494
- [3] V. Astier and T. Unger, Stability index of algebras with involution (2013), in preparation.
- [4] E. Bayer-Fluckiger and R. Parimala, Classical groups and the Hasse principle, Ann. of Math. (2) 147 (1998), no. 3, 651–693.
- [5] D.W. Lewis and T. Unger, A local-global principle for algebras with involution and hermitian forms, Math. Z. 244 (2003), 469–477.
- [6] W. Scharlau, Induction theorems and the structure of the Witt group, *Invent. Math.* 11 (1970), 37–44.