Correction to Hermitian Morita Theory: a Matrix Approach

DAVID W. LEWIS AND THOMAS UNGER

Our description of the adjoint involution ad_{h_0} in §1 should be corrected as follows:

$$
\mathrm{ad}_{h_0}(X) = S^{-1}\overline{X}^t S, \quad \forall X \in M_n(D).
$$

Consequently, S should be replaced by S^{-1} and vice versa everywhere in §2.

The proof of [1, Prop. 3.1] contains an error: the matrices e_{ii} are not defined for all values of i when $k > n$. We are very grateful to Bhanumati Dasgupta for pointing this out to us and for contributing to a correct proof which is presented below.

Proposition 3.1. There exists an ε -hermitian $k \times k$ -matrix $B \in$ $M_k(D)$ such that

$$
h(x,y) = \overline{x}^t B y, \ \forall x, y \in D^{k \times n}.\tag{1}
$$

Proof. Let $B = (b_{ij})$. We will determine the entries b_{ij} . Let $e_{ij} \in$ $D^{k \times n}$, $e'_{ij} \in D^{n \times k}$ and $E_{ij} \in M_n(D)$ respectively denote the $k \times n$ matrix, the $n \times k$ -matrix and the $n \times n$ -matrix with 1 in the (i, j) -th position and zeroes everywhere else. One can easily verify that

$$
e_{if}E_{f\ell}=e_{i\ell},\tag{2}
$$

for all $1 \leq i \leq k$ and all $1 \leq f, \ell \leq n$. Also note that if $C \in M_n(D)$, then computing the product $E_{ij}C$ picks the j-th row of C and puts it in row i while making all other entries zero. Similarly, computing the product CE_{ij} picks the *i*-th column of C and puts it in column j while making all other entries zero. The matrices e_{ij} and e'_{ij} behave in a similar fashion.

The matrices $\{e_{ij} | 1 \le i \le k, 1 \le j \le n\}$ generate $D^{k \times n}$ as a right $M_n(D)$ -module. Thus it suffices to compute $h(e_{if}, e_{jq})$ for all 1

 $1 \leq i, j \leq k$ and all $1 \leq f, g \leq n$. Using (2) we have for arbitrary $1 \leq \ell, r \leq n$ that

$$
h(e_{if}, e_{jg}) = h(e_{i\ell}E_{\ell f}, e_{jr}E_{rg})
$$

= $E_{f\ell}h(e_{i\ell}, e_{jr})E_{rg}$
= $(h(e_{i\ell}, e_{jr}))_{\ell r}E_{fg}$,

where $(h(e_{i\ell}, e_{jr}))_{\ell r}$ denotes the (ℓ, r) -th entry of the $n \times n$ matrix $h(e_{i\ell}, e_{jr})$. It follows that $(h(e_{i\ell}, e_{jr}))_{\ell r}$ is independent of the choice of ℓ and r. For all $1 \leq i, j \leq k$ we define

$$
b_{ij} := (h(e_{i\ell}, e_{jr}))_{\ell r}.
$$

Thus $h(e_{if}, e_{jg}) = b_{ij}E_{fg}$ for all $1 \leq i, j \leq k$ and all $1 \leq f, g \leq n$. We also have

$$
\overline{e_{ij}}^t B e_{jg} = e'_{fi} B e_{jg} = b_{ij} E_{fg}
$$

for all $1 \leq i, j \leq k$ and all $1 \leq f, g \leq n$. Therefore,

$$
h(e_{if}, e_{jg}) = \overline{e_{if}}^t B e_{jg}
$$

for all $1 \leq i, j \leq k$ and all $1 \leq f, g \leq n$, which establishes (1). Finally,

$$
b_{ji}E_{gf} = h(e_{jg}, e_{if}) = \varepsilon \overline{h(e_{if}, e_{jg})}^{t} = \varepsilon \overline{b_{ij}} \, \overline{E_{fg}}^{t} = \varepsilon \overline{b_{ij}} E_{gf},
$$

for all $1 \le i, j \le k$ and all $1 \le f, g \le n$, which implies $b_{ji} = \varepsilon b_{ij}$, for all $1 \leq i, j \leq k$. In other words, $b_{ji} = \varepsilon b_{ij}$, for $1 \leq i, j \leq k$, so that $\overline{B}^t = \varepsilon B$, which finishes the proof. Ē

REFERENCES

[1] Lewis, D.W. and Unger, T., Hermitian Morita Theory: a Matrix Approach. Irish Math. Soc. Bulletin 62 (2008), 37–41.

David Lewis and Thomas Unger, School of Mathematical Sciences, University College Dublin, Belfield, Dublin 4, Ireland, david.lewis@ucd.ie, thomas.unger@ucd.ie

16 April 2018